Usaremos a ideia de operação inversa.
0:3 = 0, porque 0 x 3 = 0.
Até ai, tudo certo! Zero dividido por qualquer número diferente de zero, dá zero.
Agora veja:
3:0 deveria ser o número que multplicado por zero resultasse 3. Ora, não há número que multiplicado por zero dê 3.
Então, não existe 3:0.
Esse raciocínio é válido para a divisão de qualquer outro número não nulo por zero, por isso podemos concluir que não há divisão por zero.
Mas, e zero divido por zero?
0:0 deveria ser o número que multiplicado por zero resulta zero. Ora, qualquer número multiplicado por zero resulta zero. Chamamos essa dividão na matemática de "indeterminação".
Mas, esse é um assunto para uma nova postagem.
O negócio é o seguinte: se você não tem nenhuma maça não pode dividi-la com ninguém. hehe. Esse negócio de "inderminação" é muito complicado. Eu só entendo com maças, graças a Deus existem pessoas inteligentes como o Junior para entender os cálculos e nos ajudar quando em apuro. hehe. Bjs.
ResponderExcluirBurra!
ExcluirEntão, se vc tem 1 maçã e divide por "0.5" vc terá 2 maçãs? rsrs dividir maçãs só vale na 4° serie!
ExcluirEste comentário foi removido pelo autor.
ExcluirNa verdade, Leandro, a pergunta não seria exatamente essa. Seria "em quantas metades se pode dividir uma maçã?". Divisão com frações também pode ser feita com maçãs sim!
ExcluirEste comentário foi removido pelo autor.
Excluireu só sei essa com laranja
ExcluirGostei da idéia da maçã. É uma boa alternativa para explicar essa operação...
ResponderExcluirDesculpe pelo atrazo em acompanhar o blog, eu o encontrei hoje.Sabemos que o resultado de qualquer divisão por zero foi convencionado, depois de muitos estudos. Mas houve um tempo em que se estuadava matemática sem que o zero fosse conhecido. Que tal uma pesquisa sobre esse período, inclusive sobre quando surgiu o zero, e quem introduziu?
ResponderExcluirElifas Arajo - fjelifas@hotmail.com
Brahmagupta (598–668) primeiros registros sobre o uso do zero como um número
ExcluirElifas Arajo - fjelfas@hotmail.com, acabei de remeter um E-mail sobre o significado dos nºs, achei lógica no assunto espero que a resposta satisfaça a sua pergunta sobre o nº 0(zero).
ResponderExcluirAdilson L França
Hum...
ResponderExcluirInteressante...
Numa discussao, entre amigos, descobri algo muito interessante, e passo a explicar o que acabo de aprender neste momento:
- Nao deves, dividir um número por zero. A partir do momento em que assumes que matemáticamente é possivel demonstrar que 1:0 = infinito, tens de estar preparado para assumir toda e qualquer inconsistencia, como por exemplo, que é possivel demonstrar que se a=b
1=2... Nas nossas cabeças, nao cabe dizer que uma maça é igual a 2 maças.
No entanto, matemáticamente é possivel demonstrar que á medida que um número TENDE para zero, o resultado TENDE para o infinito. E que no limite, esse resultado é de facto infinito.
Aqui o truque é usar a palavra TENDE, em vez de usar a palavra "quando é".
ex:
1:0,1=10
1:0,01=100
1:0,001=1000
... etc...
Se analizarmos estas expressoes, podemos dizer que:
- Quanto menor é o divisor, maior é o resultado da divisao. E á medida que o divisor tende para zero, o resultado tende para o infinito, e no limite, o resultado é infinito.
Parece estranho, mas eu nao estou a dizer que 1:0=infinito.
Estou a empregar a palavra "TENDE" e a palavra "NO LIMITE". No mundo das matemáticas, estas diferenças, fazem toda a diferença.
Espero ter ajudado...
Anônimo, você está ABSOLUTAMENTE certo quando diz que " Quanto menor é o divisor, maior é o resultado da divisao. E á medida que o divisor tende para zero, o resultado tende para o infinito, e no limite, o resultado é infinito. "
ExcluirPARABÉNS !!!
achei o blog hoje!
ResponderExcluirquando dizemos que não temos nenhuma maça para dividir, estamos lidando com o caso 0:n = 0 e não o caso da divisão de algum número por zero.
concluindo....
ResponderExcluiracho que o que podemos fazer com as maças é que tenho 20:0, ou seja, tenho 20 maças e ngm com quem dividi-las. Com isso, a divisão fica indeterminada!
Não fica indeterminada, fica impossível! A indeterminação ocorre quando nenhuma maçã for dividida para nenhuma pessoa.
ExcluirMeu entendimento é esse aqui
ResponderExcluir* Quando eu tenho 20 maças e não tenho com quem divdí-las, eu acabo ficando com todas. então seria representada pela expressão = 20:1 . No caso 1 representa o produto a ser divido (o sujeito da divisão, o tal do divisor). Já não há uma divisão nesse caso por que dividir algo inteiro em apenas 1 parte nos dá o próprio inteiro;
* Se eu tivesse 20 maçãs, ninguém pra dividir e eu também não quisesse ficar com elas (não há o divisor), eu simplesmente me desfazeria delas e não haveria um divisão pois não haveria a partilha das maçãs entre ninguém, nem mesmo quem tinha as maças pra dividir. O ato de dividir não estaria presente, também nesse caso. Representa-se pela expressão = 20:0;
A diferença é que em um dos casos o produto a ser divido se conserva e no outro, se perde. Matematicamente, a divisão é considerada indeterminada, mas na verdade não existe divisão nenhuma...
este pensamento tem uma falha pois ao se afirmar que dividir por
Excluirzero é igual a dividir com ninguem, da margem para a argumentação
de que é a mesma coisa que não fazer nada,portanto multiplicar dor um.
No post acima, o cometário final se refere ao segundo asterísco.
ResponderExcluirUma optima maneira de mostrar o problema da divisão por zero consiste em demonstar o resultado da famosa igualdade 1=2 que resulta justamente de se assumir possível tal divisão. A construção de contradições como esta ajuda bastante à identificação de construções mentais inválidas e dá-nos mecanismos que nos permitem a construção de objectos matemáticos bem definidos. Os paradoxos sao uma ferramenta essencial na procura da verdade matemática.
ResponderExcluirNa realidade não existe verdade absoluta e lógica. a matemática é uma ciencia que tende descobrir o abstrato . e entrar em campos não aceitos pelos legisladores que querem manipular a escola.Quando penetramos no mundo abstrato não significa que estamos saindo da realidade, a verdade é relativa e a matemática pode ser demonstrada mesmo abstrata e depois ser aplicada no mundo real como eram os numeros negativos no renascimento. e hoje são de grande necessidade na vida humana. Eu analisei a divisão poe (0) e veja só que interessante temos por exemplo 3: 0 ( = infinito) eu aceito que é uma divisão e não só uma tendencia, pois a matematica usa essa divisão para limites. mesmo que não queiram sem usar esse conceito não se calcularia limites , ent~~ao o numero infinito existe!!!! mesmo não parecendo real. ele tem sua propriedades especificas veja. 3:0 = inf. ou 3 = 0*inf( o inf completa qualquer multiplicação por O dando qualquer numero, portanto eu aceito e uso essa divisão para varios problemas principalmente em sistemas de equações não lineares e lineares.( Agora: 0/0 = n pois n*0 = 0 o que confirma o calculo inverso. e 0/1 = 0 , 1/0 = inf então 0 e inf são elemento inversos na multiplicação, ou seja 0/1 * 1/0= 0*1/1*0 = n( qualquer numero indistintamente incluindo o 1.
ResponderExcluirHamilton Gil de Oliveira eu demonstrei as propriedades dos numeros estendendo ao inf.
ResponderExcluirUma aplicação da divisão por (0) . de acordo com o modelo de extensão dos numeros que propus hoje!!Seja resolver a equação: X -5 = 2+ X Se resolvermos, vejamos que : X-x = 2 + 5 >>> 0 = 7 o que é um absurdo.pois 0 # 7 . Se pernsarmos diferente> X-X = 7 ou 0 = 7 .o mesmo absurdo. Agora penetramos num campo até então desconhecido acrescentando ao 0 uma unidade incógnita. Se 0 = 7, 0.X = 7 , pois 0x = 0.Assim isolando o X temos: X = 7/0 = inf.( no campo infinitesimal todos os numeros são representados por um ponto , Assim 5 = -2 = 808 = 0 = A com A um nuero real qualquer.Isto vale no campo extenso infinitesimal, mas no campo de escala onde os numeros são distintos e cada qual representado por um ponto,no grafico caestesius, de forma geral A = (a; 0) numero real , isto não vale. Por mais absurdo que sejaa!!! o infinito (inf) existe em qualquer operação matemática e a sua representação ainda está em estudos. O inf é apenas um ponto no desconhecido com todas as propriedades dos Reais.((Copyrigt. Hamilton Gil de Oliveira . Matematico autodidata Quatá S paulo.)
ResponderExcluirPrezado Júnior
ResponderExcluirConcordo plenamente com você, inclusive aprendi na escola uma frase: "Jamais dividas por zero".
E a resposta da divisão por zero é: "Não existe!".
É muito fácil concluir isto, porque se você não tem com quem dividir (zero) então não existirá divisão!
Grande abraço!!!
não existindo divisão não se faz nada com o numero
Excluirportanto fica o proprio numero!
na verdade tem uma solução olhe 3:0=0 mas fica os restos que são 3 assim faça a prova real assim 3.0=0 mas como eu disse os restos são 3 então some assim 3.0=0+3=3 simples vc ja pode ver que esta serto por causa da prova real
ResponderExcluirNo caso, se eu multiplicar qualquer número por 0 e somar 3 vai dar 3, isso não acontece só com o 0.
ExcluirEu tenho 3 maçãs e divido-as com zero pessoas. Cada pessoa ficará com quantas maçãs?
ResponderExcluirOra, como é que cada pessoa irá receber maçãs se não tenho ninguém para dividi-las?
Então, a questão não faz sentido! A divisão por zero não pode ser feita pelo simples fato de não fazer sentido. A teoria dos limites afirma que se x->0, então 1/x->infinito. Isto não quer dizer que 1/0=infinito.
Exatamente isso que penso!!!!
Excluir1/0=infinito por que 1/inf= 0 por que 1 ia ficar com partes tão pequenas que ia valer o mesmo que 0,
ResponderExcluirpor exemplo: 10/3=3,333333... se que tem infinitos 3, e 3,33333... com infinitos 3 multiplicado por 3 da 9,99999... , mais esse numero pelo fato de ser infinitos 9 ele pode ser considerado como 9,99999...=10 logo 10-9,9999...=0 "se quisermos considerar 9,999...=10" se não quisermos considerar 10-9,999...= 0,000000...001 (com infinitos 0) logo 0=0,0000...000001 (com infinitos 0)
Então 1/0=inf por que se ficamos somamdo 0,0000...00001 um dia o resultado vai dar 1, esse dia nunca vai chegar pois 0,000...0000001 tem infinitos 0, mais sabemos que é possivel dar esse resultado
Vocês estão ignorando o simples fato de que, tanto o zero, quanto o infinito, são conceitos abstratos, e de que o infinito pode assumir tudo o que existe. Assim, a divisão por zero dá infinito porque, na operação inversa, o infinito multiplicado por zero, dá qualquer número, todos os números, e todos verdadeiros! O ponto é quê nossas mentes não conseguem raciocinar o "infinito", mas ele existe! E muitas gente só consegue raciocinar "maçãs". É uma limitação do cérebro!
ResponderExcluirOlha, existe uma afirmação clássica!! Todo número multiplicado por zero tem como resultado zero!!! não se esqueça que o termo utilizado é "todo", e na sua colocação vc desconsidera isso. analise com cuidado!!!.
ExcluirQuando nascemos somos programados a aceitar sem questionar.Se tu tem 5 moedas e nao dividi com ninguém sobra 5.E nao venha falar de interpretação de texto kkk.Mano que cagada fizeram e mano qrendo explicar e a salvar pele da matemática
ResponderExcluir.Estao iguais a cientista q fala q Deus não existe e assume q usamos so 10% do cérebro ou seja esses 10% classifica q nao existe ou é indeterminada aquilo que sou incapaz de aceitar ou nao sei a resposta.
Quando nascemos somos programados a aceitar sem questionar.Se tu tem 5 moedas e nao dividi com ninguém sobra 5.E nao venha falar de interpretação de texto kkk.Mano que cagada fizeram e mano qrendo explicar e a salvar pele da matemática
ResponderExcluir.Estao iguais a cientista q fala q Deus não existe e assume q usamos so 10% do cérebro ou seja esses 10% classifica q nao existe ou é indeterminada aquilo que sou incapaz de aceitar ou nao sei a resposta.
Se dividirmos um número por zero, a resposta não pode ser zero. Alguns pensam ainda que a divisão por zero é igual ao infinito, pela seguinte razão:
ResponderExcluirImagine uma cesta com 8 maçãs. Se cada pessoa pegar quatro maçãs, quantas pessoas tirarão quatro maçãs da cesta? A resposta é DUAS. Mas, e se cada pessoa não tirar nenhuma maçã, quantas poderão pegar as maçãs? Por isso que há a ideia do infinito, visto que infinitas pessoas poderiam "pegar nenhuma" maçã, e essas nunca acabariam. Porém, é um raciocínio incorreto, pois dessa forma infinitas pessoas jamais deixariam a cesta vazia.
so matematica
Cheguei até aqui tentando entender Graus de Liberdade de um conjunto amostral, pois há mais coerência se fazer a relação da variância pelos espaços entres os números do conjunto (conte os dedos: 10 dedos; os espaços: 9 espaços). Vejo que há relação com a divisão de um número por zero e o resultado ser um abstrato.
ResponderExcluirporque nao existe nenhum quociente que multiplicado por 0 de (por exemplo) 7.
ResponderExcluirTIRANDO TODAS ESSAS IDEIAS EU FICO PENSANDO... O ZERO NÃO SERIA O TODO? DOIS POR 1=2 O TODO. 0 DO UNIVERSO É O TODO. E NÃO NADA COMO PENSAM, QUANDO SE PERDE UM MEMBRO O MEMBRO SE FOI, A MATÉRIA SE FOI, MAS A ENERGIA CONTINUA. AGORA ONDE... PARTIU ESTUDAR!
ResponderExcluir